Publicaciones Similares

  • Agentes de IA

    La inteligencia artificial (IA) está revolucionando la forma en que interactuamos con el mundo. Entre las aplicaciones más interesantes y útiles se encuentran los agentes de IA, programas diseñados para realizar tareas específicas, aprender de la experiencia y adaptarse a nuevas situaciones. En este artículo, exploraremos qué son los agentes de IA, cómo funcionan y…

  • Feedforward

    Se llama redes feedforward a las redes en que las salidas de una capa son utilizadas como entradas en la próxima capa. Esto quiere decir que no hay loops «hacia atrás». Siempre se «alimenta» de valores hacia adelante. El concepto de «fully connected Feedforward Networks» se refiere a que todas las neuronas de entrada, están…

  • Almacén de datos

    Definición de Almacén de Datos Un Almacén de Datos (o Data Warehouse) es una gran colección de datos que recoge información de múltiples sistemas fuentes u operacionales dispersos, y cuya actividad se centra en la Toma de Decisiones –es decir, en el análisis de la información– en vez de en su captura. Una vez reunidos…

  • Retropropagación

    La retroprogación (backpropagation o propagación hacia atrás) es un método de cálculo del gradiente. El método emplea un ciclo propagación – adaptación de dos fases. Una vez que se ha aplicado un patrón a la entrada de la red como estímulo, este se propaga desde la primera capa a través de las capas siguientes de…

  • Entropía cruzada

    La entropía cruzada conecta las probabilidades con las funciones de error. Está vinculada con la estimación por máxima verosimilitud. Buscaremos modelo cuya entropía sea mínima, porque nos darán la mejor clasificación, ya que son los que tienen una mayor probabilidad (y minimizan la función de error: entropía cruzada). La entropía se define como $-ln(P(x))$. La…

  • Perceptrón

    El perceptrón es el bloque básico de construcción de las redes neuronales artificiales. Los perceptrones se asemejan a las neuronas cerebrales. Algoritmo lineal del perceptrón Los pasos del algoritmo son los siguientes: Inicializar los valores de los pesos y del bias (sesgo) Propagar hacia delante Comprobar el error Retropropagar y ajustar pesos y sesgo Repetir…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *