Publicaciones Similares

  • Redes neuronales

    Las redes neuronales se utilizan para el aprendizaje profundo, o Deep Learning. El diseño de las Redes Neuronales Artificiales está inspirado en las redes neuronales biológicas, imitando la forma en que opera el cerebro. Las neuronas utilizadas en las redes artificiales básicamente son funciones matemáticas. Cada red tiene: Neuronas de entrada, capa de entrada de…

  • Análisis de datos

    En el Análisis de Datos (o Data Science) tenemos cinco etapas: Enmarcar el problema. Hacer las preguntas adecuadas.    – ¿Cuál es el objetivo?    – ¿Qué queremos estimar o predecir? Adquirir y preparar los datos.    – ¿Qué recursos tenemos para obtener datos?    – ¿Qué información es relevante?    – Limpiar y filtrar…

  • Perceptrón

    El perceptrón es el bloque básico de construcción de las redes neuronales artificiales. Los perceptrones se asemejan a las neuronas cerebrales. Algoritmo lineal del perceptrón Los pasos del algoritmo son los siguientes: Inicializar los valores de los pesos y del bias (sesgo) Propagar hacia delante Comprobar el error Retropropagar y ajustar pesos y sesgo Repetir…

  • Convolutional Neural Network

    Las Convolutional Neural Networks son redes multicapa que toman su inspiración del cortex visual de los animales. Esta arquitectura es útil en varias aplicaciones, principalmente procesamiento de imágenes, reconocimiento de vídeo y procesamiento del lenguaje natural. La arquitectura consta de varias capas que implementaban la extracción de características y luego clasificar. El siguiente paso es…

  • Almacén de datos

    Definición de Almacén de Datos Un Almacén de Datos (o Data Warehouse) es una gran colección de datos que recoge información de múltiples sistemas fuentes u operacionales dispersos, y cuya actividad se centra en la Toma de Decisiones –es decir, en el análisis de la información– en vez de en su captura. Una vez reunidos…

  • Regresión logística

    El algoritmo de regresión logística consiste en: Tomar los datos Elegir un modelo aleatorio Calcular el error Minimizar el error y obtener un modelo mejor

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *