Publicaciones Similares

  • Minería de datos

    Definición de Minería de Datos La Minería de Datos (Data Mining) es un conjunto de técnicas y procesos de análisis de datos que permite extraer información de bases de datos y Almacenes de Datos mediante la búsqueda automatizada de patrones y relaciones. Modelos de Minería de Datos De verificación. El usuario solicita que se verifique…

  • Machine Learning

    Introducción Los términos machine learning y aprendizaje automático se utilizan indistintamente. Inteligencia artificial Aunque a veces se usan indistintamente los términos inteligencia artificial y machine learning, machine learning es solo una parte de la inteligencia artificial. Ejemplos en los que se utiliza hoy en día la inteligencia artificial son: Detección del fraude. Programación de recursos….

  • Perceptrón

    El perceptrón es el bloque básico de construcción de las redes neuronales artificiales. Los perceptrones se asemejan a las neuronas cerebrales. Algoritmo lineal del perceptrón Los pasos del algoritmo son los siguientes: Inicializar los valores de los pesos y del bias (sesgo) Propagar hacia delante Comprobar el error Retropropagar y ajustar pesos y sesgo Repetir…

  • Retropropagación

    La retroprogación (backpropagation o propagación hacia atrás) es un método de cálculo del gradiente. El método emplea un ciclo propagación – adaptación de dos fases. Una vez que se ha aplicado un patrón a la entrada de la red como estímulo, este se propaga desde la primera capa a través de las capas siguientes de…

  • Deep Learning

    Introducción Redes neuronales Perceptrón Softmax Entropía cruzada Regresión logística Descenso del gradiente Perceptrones multicapa Feedforward Retropropagación Convolutional Neural Network Historia de las redes neuronales – rhernando.net Bibliografía Libros Redes neuronales & deep learning, Fernando Berzal Cursos AI Programming with Python Nanodegree Juno Lee, Mat Leonard, Jennifer Staab, Juan Delgado, Mike Yi, Ortal Arel, Luis Serrano…

  • Regresión logística

    El algoritmo de regresión logística consiste en: Tomar los datos Elegir un modelo aleatorio Calcular el error Minimizar el error y obtener un modelo mejor

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *