Publicaciones Similares

  • Razonamiento y aprendizaje

    Razonamiento Introducción. Sistemas expertos Un sistema experto es un sistema informático (hardware o software) que simula a expertos humanos en cierta área de especialización dada. Razonamiento aproximado. Tratamiento de la incertidumbre Fuentes de incertidumbre Se pueden clasificar las fuentes de incertidumbre en los siguientes grupos: Deficiencias de la información, características del mundo real, y deficiencias…

  • Deep Learning

    El aprendizaje profundo (deep learning) es un conjunto de algoritmos de aprendizaje automático (machine learning) basados en asimilar representaciones de datos. Una observación (por ejemplo, una imagen) puede ser representada en muchas formas (por ejemplo, un vector de píxeles), pero algunas representaciones hacen más fácil aprender tareas de interés (por ejemplo, "¿es esta imagen una…

  • Entropía cruzada

    La entropía cruzada conecta las probabilidades con las funciones de error. Está vinculada con la estimación por máxima verosimilitud. Buscaremos modelo cuya entropía sea mínima, porque nos darán la mejor clasificación, ya que son los que tienen una mayor probabilidad (y minimizan la función de error: entropía cruzada). La entropía se define como $-ln(P(x))$. La…

  • Convolutional Neural Network

    Las Convolutional Neural Networks son redes multicapa que toman su inspiración del cortex visual de los animales. Esta arquitectura es útil en varias aplicaciones, principalmente procesamiento de imágenes, reconocimiento de vídeo y procesamiento del lenguaje natural. La arquitectura consta de varias capas que implementaban la extracción de características y luego clasificar. El siguiente paso es…

  • Deep Learning

    Introducción Redes neuronales Perceptrón Softmax Entropía cruzada Regresión logística Descenso del gradiente Perceptrones multicapa Feedforward Retropropagación Convolutional Neural Network Historia de las redes neuronales – rhernando.net Bibliografía Libros Redes neuronales & deep learning, Fernando Berzal Cursos AI Programming with Python Nanodegree Juno Lee, Mat Leonard, Jennifer Staab, Juan Delgado, Mike Yi, Ortal Arel, Luis Serrano…

  • Historia de las redes neuronales

    1958 – Perceptrón 1965 – Perceptrón multicapa 1980’s Neuronas Sigmoidales Redes Feedforward Retropropagación 1989 – Convolutional neural networks (CNN) / Recurent neural networks (RNN) 1997 – Long short term memory (LSTM) 2006 – Deep Belief Networks (DBN): Nace deep learning Restricted Boltzmann Machine Encoder / Decoder = Auto-encoder 2014 – Generative Adversarial Networks (GAN)

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *