Regresión logística
El algoritmo de regresión logística consiste en:
- Tomar los datos
- Elegir un modelo aleatorio
- Calcular el error
- Minimizar el error y obtener un modelo mejor
El algoritmo de regresión logística consiste en:
El método del descenso del gradiente (gradient descent) es un algoritmo de optimización que permite converger hacia el valor mínimo de una función mediante un proceso iterativo. En aprendizaje automático básicamente se utiliza para minimizar una función que mide el error de predicción del modelo en el conjunto de datos. A esta función se le…
Implementando la capa oculta Capas de entrada (input), oculta (hidden) y de salida (output) en una red neuronal Pesos entre la capa de entrada y la capa oculta Ejemplo A continuación se implementa una red neuronal 4x4x2, con paso directo y como función de activación la sigmoide. import numpy as np def sigmoid(x): """ Calculate…
La retroprogación (backpropagation o propagación hacia atrás) es un método de cálculo del gradiente. El método emplea un ciclo propagación – adaptación de dos fases. Una vez que se ha aplicado un patrón a la entrada de la red como estímulo, este se propaga desde la primera capa a través de las capas siguientes de…
El perceptrón es el bloque básico de construcción de las redes neuronales artificiales. Los perceptrones se asemejan a las neuronas cerebrales. Algoritmo lineal del perceptrón Los pasos del algoritmo son los siguientes: Inicializar los valores de los pesos y del bias (sesgo) Propagar hacia delante Comprobar el error Retropropagar y ajustar pesos y sesgo Repetir…
El aprendizaje profundo (deep learning) es un conjunto de algoritmos de aprendizaje automático (machine learning) basados en asimilar representaciones de datos. Una observación (por ejemplo, una imagen) puede ser representada en muchas formas (por ejemplo, un vector de píxeles), pero algunas representaciones hacen más fácil aprender tareas de interés (por ejemplo, "¿es esta imagen una…
La función Softmax La función Softmax (o función exponencial normalizada)es equivalente a la sigmoide, pero cuando el problema de clasificación en lugar de tener dos clases tiene tres o más. La función está dada por $$ \sigma_j(\vec{z}) = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}, \mbox{ para } j=1,\dots K $$ En python la podríamos definir de la siguiente forma:…