Publicaciones Similares

  • Deep Learning

    Introducción Redes neuronales Perceptrón Softmax Entropía cruzada Regresión logística Descenso del gradiente Perceptrones multicapa Feedforward Retropropagación Convolutional Neural Network Historia de las redes neuronales – rhernando.net Bibliografía Libros Redes neuronales & deep learning, Fernando Berzal Cursos AI Programming with Python Nanodegree Juno Lee, Mat Leonard, Jennifer Staab, Juan Delgado, Mike Yi, Ortal Arel, Luis Serrano…

  • Softmax

    La función Softmax La función Softmax (o función exponencial normalizada)es equivalente a la sigmoide, pero cuando el problema de clasificación en lugar de tener dos clases tiene tres o más. La función está dada por $$ \sigma_j(\vec{z}) = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}, \mbox{ para } j=1,\dots K $$ En python la podríamos definir de la siguiente forma:…

  • Perceptrón

    El perceptrón es el bloque básico de construcción de las redes neuronales artificiales. Los perceptrones se asemejan a las neuronas cerebrales. Algoritmo lineal del perceptrón Los pasos del algoritmo son los siguientes: Inicializar los valores de los pesos y del bias (sesgo) Propagar hacia delante Comprobar el error Retropropagar y ajustar pesos y sesgo Repetir…

  • Entropía cruzada

    La entropía cruzada conecta las probabilidades con las funciones de error. Está vinculada con la estimación por máxima verosimilitud. Buscaremos modelo cuya entropía sea mínima, porque nos darán la mejor clasificación, ya que son los que tienen una mayor probabilidad (y minimizan la función de error: entropía cruzada). La entropía se define como $-ln(P(x))$. La…

  • Chat Completion vs Asistentes Open AI

    Modelos de Finalización de Chat: Funcionamiento Básico: Estos modelos, como GPT-4 o GPT-4o, reciben una secuencia de mensajes como entrada y generan una respuesta basada en ellos. Limitaciones: Falta de Memoria Persistente: No retienen automáticamente el historial de mensajes. Por ejemplo, si preguntas "¿Cuál es la capital de Japón?" y luego "Cuéntame algo sobre la…

  • Deep Learning

    El aprendizaje profundo (deep learning) es un conjunto de algoritmos de aprendizaje automático (machine learning) basados en asimilar representaciones de datos. Una observación (por ejemplo, una imagen) puede ser representada en muchas formas (por ejemplo, un vector de píxeles), pero algunas representaciones hacen más fácil aprender tareas de interés (por ejemplo, "¿es esta imagen una…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *