Publicaciones Similares

  • Análisis de datos

    En el Análisis de Datos (o Data Science) tenemos cinco etapas: Enmarcar el problema. Hacer las preguntas adecuadas.    – ¿Cuál es el objetivo?    – ¿Qué queremos estimar o predecir? Adquirir y preparar los datos.    – ¿Qué recursos tenemos para obtener datos?    – ¿Qué información es relevante?    – Limpiar y filtrar…

  • Descenso del gradiente

    El método del descenso del gradiente (gradient descent) es un algoritmo de optimización que permite converger hacia el valor mínimo de una función mediante un proceso iterativo. En aprendizaje automático básicamente se utiliza para minimizar una función que mide el error de predicción del modelo en el conjunto de datos. A esta función se le…

  • Minería de datos

    Definición de Minería de Datos La Minería de Datos (Data Mining) es un conjunto de técnicas y procesos de análisis de datos que permite extraer información de bases de datos y Almacenes de Datos mediante la búsqueda automatizada de patrones y relaciones. Modelos de Minería de Datos De verificación. El usuario solicita que se verifique…

  • Chat Completion vs Asistentes Open AI

    Modelos de Finalización de Chat: Funcionamiento Básico: Estos modelos, como GPT-4 o GPT-4o, reciben una secuencia de mensajes como entrada y generan una respuesta basada en ellos. Limitaciones: Falta de Memoria Persistente: No retienen automáticamente el historial de mensajes. Por ejemplo, si preguntas "¿Cuál es la capital de Japón?" y luego "Cuéntame algo sobre la…

  • Deep Learning

    El aprendizaje profundo (deep learning) es un conjunto de algoritmos de aprendizaje automático (machine learning) basados en asimilar representaciones de datos. Una observación (por ejemplo, una imagen) puede ser representada en muchas formas (por ejemplo, un vector de píxeles), pero algunas representaciones hacen más fácil aprender tareas de interés (por ejemplo, "¿es esta imagen una…

  • Feedforward

    Se llama redes feedforward a las redes en que las salidas de una capa son utilizadas como entradas en la próxima capa. Esto quiere decir que no hay loops «hacia atrás». Siempre se «alimenta» de valores hacia adelante. El concepto de «fully connected Feedforward Networks» se refiere a que todas las neuronas de entrada, están…

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *